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Abstract

We present a 3D shape reconstruction method that lever-
ages both photometric and polarimetric cues. Unlike many
active methods that require controlled lighting condition,
our method can be used under unknown and uncontrolled
natural illumination (both indoor and outdoor). We use
two circularly polarized spotlights to boost the polarization
cues corrupted by the environment lighting, as well as to
provide photometric cues. We solve surface normals with
two polarization images by combining the polarimetric and
photometric constraints. To mitigate the effect of uncon-
trolled environment light in photometric constraints, we es-
timate a lighting proxy map and iteratively refine the nor-
mal and lighting estimation. We perform experiments under
various natural illumination conditions and compare our
results with state-of-the-arts photometric stereo and shape
from polarization methods. Our method achieves good ac-
curacy and can be used in flexible environment.

1. Introduction

Both photometric stereo and shape from polarization are
vulnerable to environment lighting. Photometric stereo es-
timates surface normal from images captured under dif-
ferent lighting conditions. As lighting directions need to
be known, photometric stereo is usually performed in dark
room with calibrated and controlled illumination. Much ef-
fort has been made to generalize photometric stereo under
uncontrolled environment light [46, 19, 28]. To perform
photometric stereo in the wild, the environment light needs
to be altered at least three times to provide sufficient photo-
metric constraints. The environment maps of various light-
ing conditions are usually captured with a light probe for
lighting estimation. It’s very challenging to perform pho-
tometric stereo without knowing the environment light, or
with less than three images.

Shape from polarization [27, 7, 37] estimates surface
normal with shape-dependent polarimetric cue (e.g., the an-
gle or degree of polarization). One fundamental assumption
is that the object is illuminated by completely unpolarized
light [7]. That is to say the measured polarization is purely
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Figure 1. We introduce a method for normal estimation under nat-
ural illumination that combines polarimetric and photometric cues.

down to reflection from the object. As result, the AoLP is
highly relevant to the surface geometry. Although direct il-
lumination from many light sources (such as the sun, light
bulb, etc.) is unpolarized, light becomes partially linearly
polarized after scattering, reflection and refraction. There-
fore, environment lighting usually has linearly polarized
components, for instance, indirect illumination from a re-
flector (such as wall, floor, table top, efc.). The linearly po-
larized light will affect AoLP measurements from the object
surface (see examples in Fig. 4), making them unreliable for
normal estimation.

In this paper, we present method for estimating nor-
mal under unknown and uncontrolled natural illumination
that combines the photometric and polarimetric cues (see
Fig. 1). To to boost the polarization cues corrupted by lin-
early polarized environment light, we illuminate the object
with two controlled light sources (one at a time). We use a
snap-shot polarization camera for acquisition. By analyzing
the polarimetric reflectance, we show that using circularly
polarized source not only restores the normal-dependent
AoLP, but also allows the removal of specularity caused by
the light source itself.

The two controlled sources also provide photomet-
ric constraints. To perform photometric stereo, we pre-
calibrate the camera and light sources geometrically. The



Method \ Category | Min Input # | Surface Type Lighting condition Calibration Accuracy
Woodham et al. [43] PS 3 Lambertian controlled light sources fully calibrated High

Hung et al. [19] PS 3 Lambertian natural fully calibrated | Moderate

Mo et al. [28] PS 10 Lambertian natural uncalibrated | Moderate
Smith et al. [38] SfP 1 Dielectric natural uncalibrated Low

Tozza et al. [41] PS + SfP 2 Dielectric controlled light sources uncalibrated | Moderate
Ours PS + SfP 2 Dielectric | natural + two known sources | semi-calibrated | High

Table 1. Comparisons between our method and state-of-the-art photometric stereo (PS) and shape from polarization (SfP) methods.

calibration only needs to be performed once as the cam-
era and light sources are rigidly mounted. The environment
lighting does not need to be known. Our method thus can
be considered as semi-calibrated. By combining with the
polarimetric cue, we only need two photometric constraints
for normal estimation, which brings down the number of
input images to two. To mitigate the effect of uncontrolled
environment light in photometric constraints, we estimate a
lighting proxy map that emulates the complex environment
light in an imaginary dark room. We iteratively refine the
normal and lighting estimation until convergence. We per-
form experiments under various natural lighting conditions
(both indoor and outdoor). By comparing our normal esti-
mation results with state-of-the-arts photometric stereo and
shape from polarization methods, we show that our method
achieves good accuracy that is comparable to photometric
stereo with three or more light sources. In addition, our
method can be used in flexible environment.
Our technical contributions are summarized as below:

e We present a normal estimation method that com-
bines photometric stereo and shape from polarization,
while being applicable under unknown and uncon-
trolled lighting environment.

* We restore reliable normal-dependent angle of linear
polarization by fusing the measurements under two cir-
cularly polarized light sources.

* We utilize photometric constraints under unknown en-
vironment light by introducing a lighting proxy map.

2. Related Work

Shape from polarization (SfP). This class of methods
use shape-dependent polarimetric cues, such as the angle
of polarization [7] and degree of polarization [27], for 3D
surface reconstruction. One basic assumption is that the
surface is illuminated by unpolarized light, such that the
polarized light purely comes from surface reflection. Po-
larimetric features thus can be used for normal estimation.
As polarimetric cues are subjective to angular ambiguities,
many SfP methods assume additional priors, such as con-
vexity prior [27, 29], smooth prior [32], boundary normal

prior [7], shading cues [8], and multi-spectral measure-
ments [20], for robust normal estimation. Polarimetric cues
are often integrated with other classes of methods to im-
prove the reconstruction accuracy, for instance, multi-view
stereo [6, 5, 12, 47], Helmholtz stereopsis [16], space carv-
ing [26], structure-from-motion [13], and commodity depth
sensors [24, 25]. Notably, Smith et al. [37, 38] propose
a single-image method for shape reconstruction under un-
known lighting using polarimetric constraints. However,
the method suffers from strong “flattening” artifact (i.e., the
recovered surface appears to be flattened) and cannot gen-
eralize well to arbitrary environment lighting with high de-
gree of polarization. On the same vein as our approach,
a few prior works combine SfP with photometric stereo
[17,31,40, 5, 41]. However, all these methods require con-
trolled lighting conditions (e.g., in a dark room). In con-
trast, our approach can be used under natural illumination.
Although recent learning-based SfP methods [9, 15] claim
to extend SfP to natural environment, these methods require
large number of training data and may not be robust to un-
seen data. Ichikawa et al. [21] leverage the polarized sky
for SfP, but the polarization pattern of sky needs to be cal-
ibrated. In this work, we use controlled light to boost reli-
able polarimetric features and do not need to calibrate the
environment light.

Photometric stereo (PS) in the wild. PS methods use the
shading variations under different lighting conditions for
normal estimation. Recovering surface normal is the tra-
ditional 3D reconstruction method that has been applied in
various applications. A fundamental assumption is that the
surface reflectance follows the Lambertian model. Classi-
cal PS uses controlled, calibrated (both geometrically and
photometrically) directional light sources and is usually per-
formed in a dark room [43, 30, 45, 39, 44, 22]. Much ef-
forts has been made to extend PS to uncontrolled natural
environment. Some works leverage the natural outdoor il-
lumination change during a day to perform PS [34, 23, 18].
These methods usually take very long acquisition time (e.g.,
more than a few hours). Some manually alter the environ-
ment lighting to create shading variations and use a light
probe (e.g., a chrome ball) to calibrate the environment
light [46, 19]. Some directly perform PS under uncali-
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Figure 2. Processing pipeline of our proposed method.

brated natural lighting condition, but these methods need
to use parametric lighting model [11, 35], coarse shape
prior [35, 4, 36], or more number of images (e.g., over 10)
[4, 3, 2, 36] for lighting estimation. In this work, we reduce
the number of shading variations to two by incorporating
polarimetric cues and we do not require knowing the envi-
ronment light.

Table 1 compares our method with notable state-of-the-
art methods in PS and SfP.

3. In-The-Wild Polar-Photometric Stereo

In this section, we present our method for estimating nor-
mal under natural illumination. We first give an overview on
our acquisition system and polarization image representa-
tion (Sec. 3.1). We then show how to obtain reliable polari-
metric and photometric constraints under natural lighting
conditions (Sec. 3.2 and 3.3). Finally, we iteratively refine
the surface normal via a constrained optimization (Sec. 3.4).

3.1. Method Overview

The overall processing pipeline of method is shown in
Fig. 2. Our acquisition setup consists of a polarization
camera and two circularly polarized light sources (see
Fig. 3). The setup needs a one-time geometrical calibration.
The inputs to our method are two polarization images,
taken with the controlled lights turned on one at a time
under natural environment. By using the extra light
sources, we are able obtain normal-dependent angle of
linear polarization (or AoLP) map that was downgraded
by linearly polarized environment light. As our controlled
lights provide photometric parallax, we can formulate two
photometric constraints using the Lambertian reflection
model. As the overall reflection is a combinatory effect of
environment lighting and controlled source, we estimate
a lighting proxy map that emulates the complex environ-
ment light in the dark to reduce the reflection caused by
environment light. We iteratively refine the normal and
lighting proxy estimation with a constrained optimization.
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Figure 3. Our setup consists of a polarization camera and two light
sources (L1 & L2). We take two images under natural environment
by turning on the light sources one at a time.

In sum, our method can estimate surface normal under
natural lighting condition with two polarization images.
Our method doesn’t require calibrating the environment
light.

Polarization Images. The inputs to our method are polar-
ization images represented in form of full-Stokes vectors:
S = [Sp, 1,52, 53] . Sy is essentially the intensity image.
S to S3 are parameters with range [—1, 1] (assuming that
the intensity value Sy is normalized). They indicate the state
of polarization. Specifically, S; specifies the preference of
horizontal to vertical linear polarization; Sy specifies the
preference of 45° to —45° linear polarization; and S5 spec-
ifies the preference of right to left circular polarization. The
Stokes parameters follow the constraint: S > S7+.55+ 57
(the equal sign is taken when the light is fully polarized).
For linearly polarized light, S3 = 0, while for circularly po-
larized light, S; = S5 = 0. We’ll later use these constraints
for decomposing the overall image into various polarized
components.

3.2. Polarimetric Constraint

Under unpolarized illumination, the polarized reflec-
tion, being solely determined by the reflector’s surface, is
highly relevant to the surface geometry. Specifically, we



use the angle of linear polarization (AoLP) to regularize
surface normal. AoLP ¢ € [0, 7] can be computed as
¢ = (tan=1(S2/S1))/2. By projecting both the surface
normal and AoLP onto the image plane, Smith et al. [37]
formulate the polarimetric constraint as linear equation. For
diffuse reflection, the two projected vectors are collinear.
Thus we have

[Si'fl(d)), 7608((725), O]H =0, (D

where n = [n,,ny,n.]" is surface normal.
For specular reflection, as the AoLP is shifted by 90°,
we use ¢ + 7/2 in place of ¢ and have

[sin(¢ + 7/2), —cos(¢d + 7/2),0ln = 0. 2)

As specular reflection is usually brighter and have higher
degree of polarization, we use thresholding to separate the
diffuse and specular pixels in order to apply their specific
polarimetric constraint.

Although direct illumination from natural light sources
(such as the sun, light bulb, efc.) is unpolarized, light be-
comes partially linearly polarized after interacting with ob-
jects in the scene. Therefore, the environment light usually
has linearly polarized components, for instance, indirect il-
lumination from some object (such as wall, floor, table top,
etc.). As shown in Fig. 4, the linearly polarized environment
light largely affect the geometry-dependent AoLP, making
the AoLP measurement unreliable for normal estimation.

In order to overcome the effect of linearly polarized
environment light, we shine controlled lighting on the
object to obtain reliable AoLP. As our two controlled light
sources are close to the target object, their reflections are
dominant over that of the environment light.

Choice of Light Source. A straight-forward choice of
light source would be an unpolarized one, as polarized
reflection of unpolarized light is determined by surface
geometry. Although being a viable option, we find a
better choice is to use circularly polarized light. Same as
unpolarized light, circularly polarized light wouldn’t affect
the geometry-dependent AoLP, as its Stokes parameters
on linear polarization are zero (i.e., S; = Sz = 0). It has
another advantage of being able to remove the specular
highlight caused by the light source itself (see details
in Polarimetric Image Decomposition). It therefore also
benefit the use of photometric constraint. The downside
is that circular polarization cannot be directly measured
by commercial polarization cameras as they only linear
polarization filters. One needs to rotate a retarder in front
of the polarization camera to measure the Stokes parameter
on circular polarization (i.e., S3). But with full-Stokes
polarization camera being developed [33], single-shot
circular polarization measurement can be made possible.
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Figure 4. We compare the directly measured AoLP under environ-
ment lighting vs. the fused AoLP with our controlled light sources.
We show the normal-dependent AoLP (ground truth) in the middle
as reference.
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AoLP Fusion. As we turn on the controlled light one at a
time, we can only boost the AoLP on one side of surface
facing towards the light source in the direct measurement.
We therefore fuse the two AoLP maps to combine the
reliable measurements. The fusion is done by comparing
the intensity of the two polarization images and adopt the
AoOLP of the one with higher intensity value. Fig. 4 com-
pares AoLP map of a sphere obtained in different lighting
conditions. We can see AoLP map under environment light
(without our controlled light) is downgraded, especially by
the ground reflection, which is linearly polarized. By using
external lighting, we can boost the AoLP on one side of
the surface. Our fused AoLP map apparently combines the
reliable AoLPs for the two direct measurements. There are
regions inconsistent with the ground truth diffuse AoLP
map (calculated by Eq. 1). These are caused by specu-
lar reflection of direct light sources. We consider these
pixels as specular and use Eq. 2 for polarimetric constraints.

Polarimetric Image Decomposition. We decompose the
polarization image into three components according to the
polarization state: circularly polarized, linearly polarized,
and unpolarized.

S =5°+8 45 3)

where S =[S, S1, S, 53] " is the overall polarization im-

age; S¢ = [S§5,0,0,55] T is the circularly polarized compo-

nent; S' =[S}, 5%, 5%,0]T is the linearly polarized compo-

nent; and S* = [S¥,0,0,0] " is the unpolarized component.
It’s easy to see that

Sy =81, Sy =85, and S = S5. @)

By applying the intensity constraint of the Stokes parame-
ters, we have

S§ = 1S5] and S5 = 1/ (S1)? + (S5)2. (5)
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Figure 5. We compare the image decomposition results under cir-
cularly polarized lighting and unpolarized lighting. We can see

that the unpolarized component under circularly polarized light-
ing has its own specular reflection removed.
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Finally, we compute the unpolarized component as
Sy =Sy — S5 — S (6)

As only our controlled light source is circularly polar-
ized, S¢ separates the specular reflection from the con-
trolled source. We use the linearly polarized component
S to compute AoLP and DoLP. The unpolarized compo-
nent S is used for applying the photometric constraints,
since the specular reflection is largely reduced by separat-
ing S¢ and S'. Fig. 5 compares the image decomposition re-
sults under circularly polarized source vs. unpolarized one.
We can see that both unpolarized components have reduced
specularity from the environment light. But circularly po-
larized source also has its own specular reflection removed
by separating S°.

3.3. Photometric Constraint

As the two controlled sources provide photometric par-
allax, we can also use photometric constraint derived from
the Lambertian reflection model:

I=pEn-1), )

where I is the intensity of reflection; p is the surface albedo;
FE is the light intensity; n is the surface normal; and 1 is the
lighting direction.

Given a single calibrated light source, Eq. 7 can be di-
rectly applied to regularize the surface normal. Classical
photometric stereo solves surface normal with three such
equations established under three different lighting direc-
tions. In our problem, although our controlled light sources
provide lighting variations, their intensities are mixed the
environment light. Specifically, we use the unpolarized
component as the image intensity: S§ = I. The overall
intensity I can be considered as a combination from two
types of sources: our controlled light source and the envi-
ronment light.

I=1I°41I°= pE(n-1°) + I°, (8)

where 1€ is the reflection intensity from the known con-
trolled light source (which can be directly modeled using
Eq. 7 with lighting direction 1 and intensity £¢); € is the
reflection intensity from the unknown environment light.
Then our goal is to deduct /¢ from I, such that we can use
the photometric constraint for normal estimation. As we
also have the polarimetric constraint, the two photometric
constraints provided by our controlled light sources are
sufficient for solving normal. In the following, we describe
how to estimate and reduce [°.

Lighting Proxy Map. We model the environment light on
a half hemi-sphere (we only consider the environment that
is towards the front face of the object). Our lighting proxy
map contains the light intensity uniformly sampled on the
half hemi-sphere. Given the azimuth angle ¢ € [0, 7] and
elevation angle ¢ € [0, 7], we convert the spherical coor-
dinate (¢;, ;) to lighting direction in Cartesian coordinate
as If = [cos(¢p;) cos(¢s), sin(e;), cos(i;) sin(y;)] . For
each surface point, we compute the reflection of environ-
ment light by integrating the light intensity from all direc-
tions. Therefor we have

M
I°=p) Ef(n-19), ©9)
=1

where Ff is sampled light intensity in the lighting proxy
map with ¢ being the pixel index in the map and M the total
number of pixels (we use M = 1296 in our experiments).

By combining Eq. 8 and Eq. 9, we can formulate the
following linear equation to solve the lighting proxy map
{E¢li=1,..M}.

Ly
[

pn-1§ n-l1§ n-15,] E3 =1—pE°(n-1°.
Ey

(10)

We first estimate a coarse normal map and albedo
directly using the mixed intensity / and them plug them
into Eq. 10. We formulate such equation for each pixel
and stack them together to solve {Ef|i = 1,..M}.
However, it’s undesirable to use all pixels, as the coarse
normal map is highly inaccurate. We therefore only using
those pixels with good normal estimations for solving
{E¢]i = 1,...M}. Next, we show how to use the degree of
linear polarization (DoLP) to guide the selection.

DoLP as Confidence Map. According to [38], the DoLP d
of diffuse polarization can be modeled as

(n —1/n)?sin? 0,

B 2+42n2 — (n+1/n)? sin? 0, + 4 cos 0,v/n? — sin? 0r7
(11

d




where n is the refractive index (we use n = 1.5) and 0, is
the angle of reflection. Given surface normal n and view-
ing direction v, 6§, = arccos(n - v). DoLP is, therefore,
modeled as a function of surface normal. As the DoLP
measurement is less affected by various lighting conditions,
it provides us guidance to select good normal estimations.
Specifically, we compute a binary confidence map by com-
paring the DoLP computed with Eq. 11 (given the coarse
normal estimation) with the DoLP computed from the po-
larization image (d = \/S? + S5/Sp). The value of the
confidence map is computed as

1, |d—d| <e
=< ’ 12
¢ {0, otherwise. (12)

Here d is the DoLP directly computed from the polar-
ization image; d is the DoLLP computed with Eq. 11 given
surface normal; and e is a similarity threshold. We then only
use those normals whose confidence values are 1 for solving
the lighting proxy map. By eliminating inaccurate normals,
we can have better lighting estimation.

3.4. Optimization

We solve normal by combining the polarimetric and pho-
tometric cues. For polarimetric cue, we use Eq. 1 or Eq. 2
depending on type of reflection. For photometric cues, we
reduce the effect of environment light using the estimated
lighting proxy map. Specifically, we rewrite Eq. 9 as

I = pEe(n : le)v
M M M
. T
with B1° = [ Be1g S By BT
i=1 i=1 i=1

E¢ = ||E€1¢|| can be considered as a weighted sum of en-

vironment light according to the lighting directions. 1° is a

unit vector and can be considered as the lighting direction

with the environment light being mapped to a single source.
By substituting Eq. 13 into Eq. 8, we have

I=pE°(n-1°+ pE°n-1°),
=pE°(n-1°+ fn-1°).

13)

(14)

B = E°/E*° is the intensity ratio between the overall envi-
ronment light and our controlled light source. By combin-
ing two photometric constraints and polarimetric constraint
(here we use the diffuse case), we can formulate the follow-
ing linear system Ax = b:

It + Bl 15+ B1e 15+ SIS [yng L
12+ Bl 12+ Bl 124 P12 | [amy | = ||
sin(¢)  —cos(¢) 0 N, 0

where I; and I, are the unpolarized component of the two
input polarization images (each captured under one con-
trolled light source); 1°! and 1°? are the directions of the
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Figure 6. Normal estimation results on synthetic data.

controlled sources; v = pE. combines the lighting inten-
sity and surface albedo. Note that + is estimated along with
the normal n. Once x is solved, we have v = ||x|| and
n = x/||x||. We formulate the linear system for each sur-
face point and solve them together via the following objec-
tive function:

N N
argminz |A;x; —bj| + /\Z I1—x; - N(x;)|, (16)
j=1

{xj}76 j=1

where | - | is the L1 norm; j is the surface point index; N
is the total number of surface points; A is a term-balancing
factor (we use A = 0.04); and N (-) takes the four nearest
neighbors of its input. The first term is the data term and the
second is a smoothing term.

4. Experiments

We perform experiments on both synthetic and real data
to evaluate our method. For synthetic experiments, we fo-
cus on ablation study of various influencing factors. For
real experiments, we demonstrate that our method works in
various indoor and outdoor environment.

4.1. Synthetic Experiments

Data Simulation. We use the Mitsuba 2 renderer [1] to
simulate polarization images. Specially, we render im-
ages with the polarized rendering mode. We the KAIST
pBRDF dataset [10] to model the polarimetric surface re-
flectance. We directly render images in form of Stokes vec-
tors. Each Stokes component has resolution 500 x 500.
The camera center is at origin. Directions of the two con-
trolled light sources are 1°! = [-0.18,0.03,0.98] " and
1°2 = [0.16,0.03,0.98] . We use environment maps from
[14] and [42] to simulate the natural environment.

Fig. 6 shows our normal estimation results under various
environment maps. We use two different materials for the
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Figure 7. Results on environment light estimation. Left: Rendered
image and environment map. Middle: Environment Light Distri-
bution (ground truth vs. our estimated). Right: Normal estimation
and its error.
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Smith et al. [38] |36.89(29.63|28.56|28.16(27.81|16.98
Tozza et al. [41] |41.37|38.68|37.86|31.59|24.55|21.59
Ours 16.25|11.53| 7.51 | 5.42 | 4.26 | 3.59

Table 2. Mean angular error (in degree) w.r.t. intensity ratio (.

object: “white billiard” (column 1 & 2) and “spectralon”
(column 3 & 4). We set the ratio between overall environ-
ment light and our controlled light 3 = 0.5. The normal is
estimated using two polarization images as input (with the
controlled light source turned on one at a time). We com-
pare the estimated normal with the ground truth normal and
show the per-pixel normal error (in degree) and the mean
angular error (MAE). Results on more environment maps
and objects can be found in the supplementary material.

Fig. 7 shows our environment light estimation result.
Note that our lighting proxy map is only an approximation
of the environment map. We cannot recover a high fidelity
environment, but our estimated lighting proxy map has
consistent lighting directions as the ground truth environ-
ment map at least in the regions with high lighting intensity.
Such environment light approximation is sufficient for
reliable normal estimation.

Ablation on 5. As the ratio between overall environment
light and our controlled light 3 is important to the perfor-
mance of our method, we perform ablation study on this
parameter. Specifically, we test on 5 3 values between 0.5
to 10. The higher the § value, the stronger the environ-
ment light. 8 = 0 indicates no environment light (i.e., in a
dark room). We test on the Bunny model with “white bil-
liard” material. Normal estimation error (MAE) is shown
in Table 2. We can see that the performance of our method
downgrades as environment light gets stronger. We can ob-
tain reasonable normal estimation under environment light
10 times of the controlled light source.

We compare the results with two SfP methods. Smith
et al. [38] is purely polarization-based. It takes in one po-
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Figure 8. Real results under different environment.

larization as input. The method is claimed to be applicable
under natural illumination. Tozza et al. [41] combines PS
and SfP. Similar to our method, it takes in two polarization
images. But the method requires controlled lighting con-
dition. Note that we did not compare with PS methods,
as they need three or more images. We can see that both
methods have much larger errors than ours, even without
environment light (since these methods are uncalibrated).

4.2. Real Experiments

Real Setup. We build a portable acquisition setup to per-
form real experiments (see Fig.1). Specifically, we use a
monochrome polarization camera and two 36V LED lights.
The luminous flux of our light source is around 1300 lu-
men. We mount right-handed circular polarization filter in
front of each light source to generate circularly polarized
light. We need to rotate a quarter wave retarder in front of
the camera to capture the full-Stokes vectors. More details
on data acquisition can be found in the supplementary mate-
rials. Our setup needs to be calibrated once, so we know the
relative position between the camera and light sources. The
object is around 50 cm away from the camera. We perform
experiments under various indoor and outdoor environment.
Fig. 8 shows our normal estimation results of a same ob-
ject (“Gnome”) under different environment. The indoor
environment is a bright hallway. The outdoor scenes are
captured in the afternoon (around 5pm). We can see that
our method works well under various natural illumination.
We can see that the environment light is highly polarized,
which affects the normal dependent AoLP (see the supple-
mentary material for AoLP directly measured under envi-
ronment light). Our fused AoLP map largely boost the po-
larimetric cue to allow reliable normal estimation.
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Fig. 9 shows normal estimation results of different ob-
jects under various environment. We also compare our re-
sults with the two SfP methods ([38] and [41]). We can see
that the results of [38] have strong “flattening” artifact, al-
though estimations at boundary regions are reasonable. Re-
sults of [41] are highly inaccurate due to environment light-
ing. Their method assumes single directional light for pho-
tometric constraints. We have also compared our method
against different versions of photometric stereo. More com-
parison results on real data can be found in the supplemen-
tary material.

We also perform surface integration on our estimated
normal maps. Fig. 10 shows the recovered surfaces with
the real objects as reference.

Indoor

5. Conclusions & Discussions

We have presented a normal estimation method by com-
bining polarimetric and photometric cues. Our method can
be used under natural illumination. We setup circularly po-
larized light to provide photometric constraints, as well as
enhance the polarimetric features corrupted by linearly po-
larized environment light. To mitigate the effect of environ-
ment light in photometric constraints, we estimate a lighting
proxy map using a coarse normal map. We then iteratively
refine the normal and lighting estimation. We have demon-
strated that our method can be used in various indoor and
outdoor environment for reliable normal estimation.
Limitations. As the ratio between the overall environment
light and our controlled light is an influencing factor, our
method can work in most indoor environment, but it does
not work well in some outdoor scenes when the environ-
ment light is too bright (e.g., noon time on a sunny day).
We can integrate our method with [21] that directly use the
polarization state of sky light as constraint. Another limita-
tion is that we need to use a retarder in front of the camera
in order to measure the circular polarization. As result, our
method actually takes in four images, instead of two. This
issue can be resolved with novel polarization sensor that al-
lows single-shot full-Stokes measurement [33].
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